

Security Flaws in Universal Plug and Play

Unplug. Don’t Play.

January 2013

HD Moore

2013-01-29 v1.0.0

Copyright © 2012-2013 Rapid7, Inc. 1

Executive Summary

Universal Plug and Play (UPnP) is a protocol standard that allows easy communication

between computers and network-enabled devices. This protocol is enabled by default on

millions of systems, including routers, printers, media servers, IP cameras, smart TVs, home

automation systems, and network storage servers. UPnP support is enabled by default on

Microsoft Windows, Mac OS X, and many distributions of Linux.

The UPnP protocol suffers from a number of basic security problems, many of which have

been highlighted over the last twelve years. Authentication is rarely implemented by device

manufacturers, privileged capabilities are often exposed to untrusted networks, and common

programming flaws plague common UPnP software implementations. These issues are

endemic across UPnP-enabled applications and network devices.

The statistics in this paper were derived from five and a half months of active scanning. UPnP

discovery requests were sent to every routable IPv4 address approximately once a week from

June 1 to November 17, 2012. This process identified over 81 million unique IP addresses that

responded to a standard UPnP discovery request. Further probes determined that

approximately 17 million of these systems also exposed the UPnP Simple Object Access

Protocol (SOAP) service to the world. This level of exposure far exceeded the expectations of

the researchers.

This paper quantifies the exposure of UPnP-enabled systems to the internet at large,

classifies these systems by vendor, identifies specific products, and describes a number of

new vulnerabilities that were identified in common UPnP implementations. Over 1,500

vendors and 6,900 products were identified that are vulnerable to least one of the security

flaws outlined in this paper. Over 23 million systems were vulnerable to a single remote code

execution flaw that was discovered during the course of this research.

Rapid7 worked with CERT/CC to notify the open source projects and device manufacturers

vulnerable to the issues described in this paper. Unfortunately, the realities of the consumer

electronics industry will leave most systems vulnerable for the indefinite future. For this

reason, Rapid7 strongly recommends disabling UPnP on all internet-facing systems and

replacing systems that do not provide the ability to disable this protocol.

Rapid7 has provided a number of tools to help identify UPnP-enabled systems, including the

free ScanNow for UPnP, modules for the open source Metasploit Framework, and updates to

the Nexpose vulnerability management platform.

Copyright © 2012-2013 Rapid7, Inc. 2

Summary Statistics

2.2% of public IPv4 addresses respond to UPnP
discovery requests from the internet.

81
million unique IP addresses respond to UPnP
discovery requests, slightly more than all IPs
allocated to Canada.

20%
of those 81 million systems also expose the
SOAP API to the internet at large. This service
can allow an attacker to target systems behind
the firewall.

 
  

4 software development kits account for 73% of all
discovered UPnP instances.

332
products use MiniUPnPd version 1.0, which is
remotely exploitable. Over 69% of all MiniUPnPd
fingerprints were version 1.0 or older.

23
million fingerprints match a version of libupnp
that exposes the system to remote code
execution.









1
UDP packet is all it takes to exploit any of the 8
newly-discovered libupnp vulnerabilities. This
packet can be spoofed. 

Copyright © 2012-2013 Rapid7, Inc. 3

Immediate Actions

Given the high level of exposure and the potential impact of a successful attack, Rapid7

strongly recommends that UPnP be disabled on all external-facing systems and devices

providing a critical function.

Internet Service Providers

ISPs should review any equipment that they are providing to subscribers to verify that UPnP is

not exposed on the WAN interface.

If the equipment is affected, one of the following solutions should be considered:

 Pushing a configuration update that disables UPnP across the subscriber base

 Pushing a software update that removes UPnP capabilities from the device

 Replacing customer equipment with a device that can be configured securely

 Implementing network-wide ACLs for UDP port 1900 and specific TCP ports

Businesses

Companies should verify that all external-facing devices do not expose UPnP to the internet.

Rapid7 provides ScanNow UPnP as well as Metasploit modules that can detect vulnerable UPnP

services. If any equipment is found that exposes UPnP, the best option is to disable the

service, and if that is not possible, replace the device with a model that allows this.

Many network devices inside of the firewall are UPnP-enabled. Examples include network

printers, IP cameras, storage systems, and media servers. Any devices found that expose UPnP

should be reviewed for potential security impact. If equipment is found to use a vulnerable

UPnP implementation, the vendor should be contacted to determine their timeframe for an

update. If the UPnP service cannot be disabled and the vendor does not have an update, it

may be prudent to segment the device from the rest of the network.

Home and Mobile Users

Home and mobile PC users should ensure that the UPnP function on their home routers and

mobile broadband devices has been disabled. The free ScanNow UPnP tool from Rapid7 can

help identify affected devices. If the device does not provide the ability to disable UPnP, the

company that makes or sells the device should be contacted to see if an update is available

that provides this capability. Worst case, users should replace vulnerable equipment with

devices that do not support UPnP, or at least ones that provide the ability to disable it.

http://www.rapid7.com/resources/free-security-software-downloads/universal-plug-and-play-jan-2013.jsp
https://community.rapid7.com/community/infosec/blog/2013/01/29/security-flaws-in-universal-plug-and-play-unplug-dont-play
http://www.rapid7.com/resources/free-security-software-downloads/universal-plug-and-play-jan-2013.jsp

Copyright © 2012-2013 Rapid7, Inc. 4

Contents

January 2013 .. 0

Executive Summary .. 1

Summary Statistics .. 2

Immediate Actions ... 3

Internet Service Providers ... 3

Businesses .. 3

Home and Mobile Users .. 3

Introduction ... 6

Acknowledgements .. 6

Universal Plug and Play ... 6

Research Results .. 8

Widespread Exposure of the UPnP SSDP Service .. 8

Widespread Exposure of the UPnP SOAP Service .. 8

UPnP Exposure Concentrated Across Four Implementations 8

Network Devices use Outdated UPnP Implementations .. 8

Exploitable Vulnerabilities in the Portable SDK for UPnP Devices SSDP Parser 9

Exploitable Stack Overflow in the MiniUPnP SOAP Handler 9

Denial of Service Flaws in the MiniUPnP SSDP Parser .. 9

Methodology ... 10

Data Distribution .. 11

Version Distribution: Portable SDK for UPnP Devices ... 12

Version Distribution: MiniUPnP ... 13

Vulnerabilities ... 14

Intel/Portable SDK for UPnP Devices (libupnp) ... 14

Simple Service Discovery Protocol Vulnerabilities .. 14

Exploitability ... 17

Vendor Response ... 18

MiniUPnP ... 19

Simple Service Discovery Protocol Vulnerabilities .. 19

SOAP Handler Vulnerabilities ... 20

Vendor Response ... 21

Copyright © 2012-2013 Rapid7, Inc. 5

Appendices ... 23

Prior Research ... 24

Microsoft Windows ME UPnP Service Denial of Service Flaw 24

Microsoft Windows UPnP Service Denial of Service Flaws 24

Microsoft Windows UPnP Remote Code Execution Flaws 24

Linksys Router Unauthorized Management Access Vulnerability 24

Vulnerability Report for Linksys Devices .. 24

NetGear FM114P WAN Information Disclosure ... 25

Xavi DSL Router UPNP Long Request Denial Of Service Vulnerability 25

Belkin 54G Wireless Router Multiple Vulnerabilities .. 25

Shorewall and UPnP ... 25

Microsoft Security Bulletin MS05-039.. 25

Crazy Toaster: Can home devices turn against us? ... 25

D-Link Router UPNP Stack Overflow ... 25

UPnP-Hacks.org Research ... 26

Microsoft Security Bulletin MS07-019.. 26

Apple Mac OS X mDNSResponder Buffer Overflow ... 26

GNU Citizen/PDP UPnP Research .. 26

A Fox in the Hen House ... 26

Miranda UPnP Client ... 26

UPnP Mapping at Defcon 19 .. 27

Black Ops of TCP/IP 2011 ... 27

Vulnerable Products: Portable SDK for UPnP Devices (libupnp) 28

Vulnerable Products: MiniUPnP ... 28

Vulnerable Products: SOAP API Exposure .. 28

Copyright © 2012-2013 Rapid7, Inc. 6

Introduction

Universal Plug and Play (UPnP) is a protocol standard that allows easy communication

between computers and network-enabled devices. This protocol is enabled by default on

millions of systems, including routers, printers, media servers, smart TVs, and network

storage servers. UPnP support is enabled by default on Microsoft Windows, Mac OS X, and

many distributions of Linux.

The UPnP protocol suffers from a number of basic security problems, many of which have

been highlighted over the last twelve years. Authentication is rarely implemented by device

manufacturers, privileged capabilities are often exposed to untrusted networks, and common

programming flaws plague common UPnP software implementations. These issues are

endemic across UPnP-enabled applications and network devices.

This paper focuses on three specific classes of problems

 Programming flaws in common UPnP discovery protocol (SSDP) implementations can be

exploited to crash the service and execute arbitrary code.

 Exposure of the UPnP control interface (SOAP) exposes private networks to attacks

from the internet at large and can leak sensitive data.

 Programming flaws in the UPnP HTTP and SOAP implementations can be exploited to

crash the service and execute arbitrary code.

Acknowledgements

Jared Allar of CERT/CC did an amazing job managing the disclosure process, notifying

affected vendors, and directly contributing to the libupnp patch. JPCERT/CC was invaluable

in their facilitation of vendor coordination with KrCERT/CC and CNCERT/CC. Thomas Bernard

of the MiniUPnP project was especially helpful in providing feedback on this draft. Kurt

Seifried of the Red Hat Security Response team was extremely helpful, especially at 3:00am.

Universal Plug and Play

The Universal Plug and Play (UPnP) protocol suite was designed to simplify the discovery and

control of network devices. Capabilities vary by device, but include control of incoming port

mappings on home routers, easy identification of network printers, and the management of

media services such as streaming video. Applications use UPnP to access and configure

network-connected services. For example, a BitTorrent application may use UPnP to identify

the network’s public IP address and automatically forward incoming connections on the router

to the computer running the BitTorrent software. Another example is the “Add Device”

Copyright © 2012-2013 Rapid7, Inc. 7

wizard in Microsoft Windows. This wizard uses the UPnP protocol to identify network devices

such as scanners and printers on the local network. UPnP supports the discovery of these

devices as well as the ability to manage them, enabling tasks such as clearing the print queue

or initiating a scan.

The UPnP suite consists of two distinct services. The Simple Service Discovery Protocol (SSDP)

service listens on UDP port 1900 and is responsible for advertising available services and

responding to discovery requests.

The second component of UPnP is the HTTP service. During the discovery process, the SSDP

protocol is used to identify the location of the UPnP HTTP service and service description file

for a given system. The service description file is an XML document hosted by the UPnP HTTP

service. The TCP port used by this service varies by vendor and is often chosen at random and

the SSDP discovery response indicates the current location of this service.

In addition to providing the service description file, the HTTP service also hosts the Simple

Object Access Protocol (SOAP) interface. SOAP provides a way for other systems on the

network to call a defined set of functions. All useful UPnP functionality is implemented

through SOAP API calls which are further categorized into device profiles. Each profile

implements a number of services, which, in turn, expose a set of actions and state variables.

Commonly supported device profiles include the Internet Gateway Device suite, Printer, and

MediaServer.

A system that wishes to use a UPnP-enabled device would first send a SSDP M-SEARCH request

to the local network. Systems that run a local SSDP service may simply query the existing

device cache. The response would indicate the HTTP location of the device description XML.

This XML provides detailed device information and a list of supported services. Once the

device description has been obtained and a list of services found, another request is sent for

the service description XML, which defines the actions available, what parameters they take,

and the format of the response. Finally, the application would send a SOAP request for the

specific URL of the target service, specifying the SOAP action in the header of the HTTP

request and supplying input parameters as an XML document in the body. The device would

execute the request and return the response as another XML document.

Copyright © 2012-2013 Rapid7, Inc. 8

Research Results

This paper is the result of a research project spanning the second half of 2012. The goal of

this research was to quantify the number of UPnP-enabled systems that expose the SSDP

service to the internet, determine how many of those also exposed the SOAP service, and

identify security weaknesses in the most commonly used UPnP implementations.

Widespread Exposure of the UPnP SSDP Service

The UPnP SSDP service is designed to allow device discovery over the local network.

This service exposes version information and network configuration details over UDP

port 1900. Our findings indicate that the SSDP service has been misconfigured across

thousands of products, resulting in widespread exposure of the SSDP service to the

internet at large. Over 81 million unique IPs were found to expose the SSDP service to

the public internet.

Widespread Exposure of the UPnP SOAP Service

The UPnP SOAP service provides access to device functions that should not be allowed

from untrusted networks, including the ability to open holes through the firewall. Our

findings indicate that the SOAP service has been misconfigured by over 1,500 network

device vendors and 6,900 devices, resulting in widespread exposure of the SOAP

service to the internet at large. We estimate that approximately 17 million unique IPs

expose the SOAP service to the public internet.

UPnP Exposure Concentrated Across Four Implementations

Over 73% of all UPnP instances discovered through SSDP were derived from only four

software development kits. These include the Portable SDK for UPnP Devices,

MiniUPnP, a commercial stack that is likely developed by Broadcom, and another

commercial kit that could not be tracked to a specific developer. This heavy

concentration substantially increases the impact of any vulnerabilities found within

these implementations.

Network Devices use Outdated UPnP Implementations

The UPnP instances found to be using the Portable SDK for UPnP Devices and the

MiniUPnP library both expose the software library version in the SSDP response. Our

Copyright © 2012-2013 Rapid7, Inc. 9

analysis of these versions indicates that the majority of exposed devices are using

UPnP libraries that are over four years old. In many cases, even devices that were

recently manufactured were still using outdated UPnP software libraries.

Exploitable Vulnerabilities in the Portable SDK for UPnP Devices SSDP Parser

The Portable SDK for UPnP devices was found to have no less than eight remotely

exploitable vulnerabilities in the SSDP parser. Although most of the systems found to

be running this software were using an obsolete version of this library, even the latest

version at the time of this research was vulnerable to two remote stack overflows.

Over 25% of all exposed SSDP services are using this software (approximately 23 million

systems). These issues have been assigned the following CVEs:

CVE-2012-5958 CVE-2012-5959 CVE-2012-5960 CVE-2012-5961

CVE-2012-5962 CVE-2012-5963 CVE-2012-5964 CVE-2012-5965

The vulnerabilities assigned to CVE-2012-5958 and CVE-2012-5959 affect all versions of

the Intel SDK and all Portable SDK versions prior to 1.6.18.

Exploitable Stack Overflow in the MiniUPnP SOAP Handler

The MiniUPnP library was found to have a remotely exploitable stack overflow in the

SOAP handler. This vulnerability was fixed in version 1.1, but over 14% of all exposed

SSDP services advertised MiniUPnP version 1.0. This vulnerability is somewhat limited

in that an attacker must be able to access the SOAP endpoint. Over 330 products were

identified that used an old version of MiniUPnP and exposed the SOAP endpoint to the

public internet. This issue has been assigned CVE-2013-0230.

Denial of Service Flaws in the MiniUPnP SSDP Parser

The MiniUPnP library was found to have a number of parsing flaws in the SSDP handler.

These vulnerabilities were fixed in version 1.4 and could allow a remote attacker to

terminate the process that embeds the MiniUPnP library. The issues have been

assigned CVE-2013-0229.

Copyright © 2012-2013 Rapid7, Inc. 10

Methodology

The statistics in this paper were derived from data collected over a period of five and a half

months (June 1 to November 17, 2012). A UPnP SSDP M-SEARCH request was sent to every IPv4

address on the internet approximately once a week. Over 93 million unique fingerprints were

obtained as the combination of IP address and UPnP SSDP server version. These fingerprints

covered a total of 81 million unique IP addresses. Although some fingerprints are more useful

than others, many of these returned information about the OS, the name of the UPnP library,

and often the version of this library. A typical string from the Server header of the SSDP

response is shown below.

Linux/2.4.31_mvl31, UPnP/1.0, Intel SDK for UPnP devices/1.3.1

In addition to the Server header, the Location header returned in the SSDP response provides

three key pieces of information. The IP address shown in this URL should correspond to the

internal IP of a router, but often does not. The port number and device descriptor path can

also serve as additional methods to fingerprint specific devices.

A follow-up scan was launched in December of 2012 in order to determine how many UPnP-

enabled systems exposed the SOAP interface to the internet. This scan also identified

specific products and vendors through the advertised device description XML page. To

conduct this scan, 150,000 class C (/24) subnets were selected at random from 2.2 million

class C subnets containing UPnP responsive systems. These 150,000 subnets represented a

search space of 38.4 million IP addresses, all of which were probed for exposed UPnP SOAP

endpoints. This resulted in just over 1 million device fingerprints. Extrapolating this ratio

across all 2.2 million subnets yields an estimate of 17.25 million IPs that expose the UPnP

SOAP endpoint to the internet. Spot checks of additional subnets confirm this ratio.

In order to determine how frequently these systems
changed IP address, the entire SSDP fingerprint database
was analyzed at monthly intervals and a mismatch of an
IP between months was used to detect that the IP had
changed.

Over 65 million of those 81 million unique IP addresses
responded with the same UPnP server fingerprint for less
than one month. Given the high rate of churn, the
relative values of the statistics in this section are more
important than the absolute values.

< 1 Month 1-2 Months

2-3 Months 4-5 Months

5+ Months

Copyright © 2012-2013 Rapid7, Inc. 11

Data Distribution

The chart below shows the distribution of 93 million unique fingerprints across the known

UPnP libraries and development kits. The key finding is that a fairly small number of libraries

represent the majority of exposed UPnP implementations.

The vendor marked Unknown SDK 1 is proprietary stack used in devices branded by Broadcom,

D-Link, TP-Link, and many other vendors. This stack does not explicitly identify itself. This

SDK uses the generic string of “Custom/1.0 UPnP/1.0 Proc/Ver”. A common trait of this SDK is

to use the fixed TCP port 5431 for the HTTP listener.

The vendor marked Unknown SDK 2 is used by a mix of smaller networking device vendors and

has proven difficult to identify. This SDK uses the generic string of “System/1.0 UPnP/1.0

IGD/1.0”. A common trait of this SDK is to use TCP port 80 for the HTTP listener. The HTTP

listener is rarely reachable from the internet at large, which makes more detailed

fingerprinting difficult.

Other
12,824,246

Intel/Portable SDK
23,660,530

MiniUPnP
19,474,736

Unknown SDK 1*
15,844,075

Unknown SDK 2
9,226,225

Other

Intel/Portable SDK

MiniUPnP

Unknown SDK 1*

Unknown SDK 2**

Net-OS 5.x

Realtek

Virata-EmWeb

Torrent Clients

Allegro Software

Copyright © 2012-2013 Rapid7, Inc. 12

Version Distribution: Portable SDK for UPnP Devices

Over 25% of the identified fingerprints (23.6 million) matched UPnP implementations based on

the Intel SDK for UPnP devices, a reference implementation that has since become the

Portable SDK for UPnP Devices (libupnp). The version split of these 23.6 million fingerprints is

shown below.

Over 12 million fingerprints are for version 1.3.1 of the Portable SDK for UPnP devices, while

another 5.5 million use the original Intel SDK v1.2 reference implementation.

Portable v1.3.1
12,251,494

Intel SDK v1.2
5,575,354

Portable v1.6.6
4,944,356 Portable v1.3.1

Intel SDK v1.2

Portable v1.6.6

Portable v1.4.2

Portable v1.6.0

Other

Copyright © 2012-2013 Rapid7, Inc. 13

Version Distribution: MiniUPnP

In second place based on frequency, the MiniUPnP software library represents over 21% of all

unique fingerprints. The version split of these 19.4 million fingerprints is shown below.

Over 13 million fingerprints are for version 1.0 MiniUPnP. This data is surprising given that the

MiniUPnP software didn’t reach version 1.0 until January of 2008. Although version 1.1 was

released in April of 2008, it is not represented at all in the SSDP responses.

One possible explanation is that many of the systems fingerprinted as 1.0 were actually

running a pre-release build that still identifies as that version. A number of beta versions and

release candidates were released between 2005 and 2008, all of which report version 1.0

through the SSDP and SOAP services. This was confirmed with the MiniUPnP developer.

MiniUPnP v1.0
13,529,518

MiniUPnP v1.2
2,936,162

MiniUPnP v1.0

MiniUPnP v1.2

MiniUPnP v1.3

MiniUPnP v1.5

MiniUPnP v1.4

Copyright © 2012-2013 Rapid7, Inc. 14

Vulnerabilities

Intel/Portable SDK for UPnP Devices (libupnp)

The majority of identified UPnP implementations are based on the Intel SDK for UPnP Devices.

The Intel SDK was created as a reference implementation and has transitioned to an open

source project under the Portable SDK for UPnP Devices name, or simply “libupnp”.

The key thing to note is how old this code base is. The original Intel SDK was released in 2001

and the most prevalent version of the Portable SDK (1.3.1) was released in 2006. The third-

most common version (1.6.6) is still over four years old at the time of this writing.

Given the age of this code and the number of devices on which it is installed, one would

assume it had been audited for security flaws at some point in the past. Prior to this

research, not a single CVE identifier or OSVDB entry had been created for an identified flaw in

the libupnp software. Keep in mind that almost a quarter of the libupnp-based systems were

running a version of this SDK that is over a decade old and more than half are using a version

of libupnp that is at least six years old.

Simple Service Discovery Protocol Vulnerabilities

Eight vulnerabilities were identified during the audit of the libupnp code base. Not all of

these flaws apply to each version, but CVE-2012-5958 and CVE-2012-5959 trigger an

exploitable condition in the SSDP parser on all versions of the Intel SDK and all versions of the

Portable SDK up to version 1.6.18.

In version 1.3.1 of the Portable SDK for UPnP Devices, the SSDP parser code lives within

upnp/src/ssdp/ssdp_server.c. The unique_service_name() function is responsible for parsing

an incoming SSDP request and filling in the fields of structure representing the event. In the

code listed below, obvious security flaws have been highlighted in yellow. Note that the cmd

variable points to the string received by the remote end. The Evt structure contains fixed-

length string buffers and is stored on the stack by a calling function.

int

unique_service_name(IN char *cmd,

 IN SsdpEvent * Evt)

{

 char *TempPtr,

 TempBuf[COMMAND_LEN],

 *Ptr,

 *ptr1,

 *ptr2,

 *ptr3;

 int CommandFound = 0;

 if((TempPtr = strstr(cmd, "uuid:schemas")) != NULL) {

Copyright © 2012-2013 Rapid7, Inc. 15

 ptr1 = strstr(cmd, ":device");

 if(ptr1 != NULL) {

 ptr2 = strstr(ptr1 + 1, ":");

 } else {

 return -1;

 }

 if(ptr2 != NULL) {

 ptr3 = strstr(ptr2 + 1, ":");

 } else {

 return -1;

 }

 if(ptr3 != NULL) {

 sprintf(Evt->UDN, "uuid:%s", ptr3 + 1);

 } else {

 return -1;

 }

 ptr1 = strstr(cmd, ":");

 if(ptr1 != NULL) {

 strncpy(TempBuf, ptr1, ptr3 - ptr1);

 TempBuf[ptr3 - ptr1] = '\0';

 sprintf(Evt->DeviceType, "urn%s", TempBuf);

 } else {

 return -1;

 }

 return 0;

 }

 if((TempPtr = strstr(cmd, "uuid")) != NULL) {

 //printf("cmd = %s\n",cmd);

 if((Ptr = strstr(cmd, "::")) != NULL) {

 strncpy(Evt->UDN, TempPtr, Ptr - TempPtr);

 Evt->UDN[Ptr - TempPtr] = '\0';

 } else {

 strcpy(Evt->UDN, TempPtr);

 }

 CommandFound = 1;

 }

 if(strstr(cmd, "urn:") != NULL

 && strstr(cmd, ":service:") != NULL) {

 if((TempPtr = strstr(cmd, "urn")) != NULL) {

 strcpy(Evt->ServiceType, TempPtr);

 CommandFound = 1;

 }

 }

 if(strstr(cmd, "urn:") != NULL

 && strstr(cmd, ":device:") != NULL) {

 if((TempPtr = strstr(cmd, "urn")) != NULL) {

 strcpy(Evt->DeviceType, TempPtr);

 CommandFound = 1;

 }

 }

 if(CommandFound == 0) {

 return -1;

 }

CVE-2012-5961

CVE-2012-5958

CVE-2012-5962

CVE-2012-5963

CVE-2012-5964

CVE-2012-5965

CVE-2012-5959

Copyright © 2012-2013 Rapid7, Inc. 16

 return 0;

}

There are no less than seven unique buffer overflows in version 1.3.1 of this code, all of

which can be used to corrupt the stack and potentially execute arbitrary code. In most

instances, the application linked to the libupnp library runs as the root user account, since

the actions handled through the SOAP API often require it (managing firewall rules, etc).

Fast forwarding to the latest libupnp released at the time of this writing, version 1.6.17:

int unique_service_name(char *cmd, SsdpEvent *Evt)

{

 char TempBuf[COMMAND_LEN];

 char *TempPtr = NULL;

 char *Ptr = NULL;

 char *ptr1 = NULL;

 char *ptr2 = NULL;

 char *ptr3 = NULL;

 int CommandFound = 0;

 size_t n = (size_t)0;

 if (strstr(cmd, "uuid:schemas") != NULL) {

 ptr1 = strstr(cmd, ":device");

 if (ptr1 != NULL)

 ptr2 = strstr(ptr1 + 1, ":");

 else

 return -1;

 if (ptr2 != NULL)

 ptr3 = strstr(ptr2 + 1, ":");

 else

 return -1;

 if (ptr3 != NULL) {

 if (strlen("uuid:") + strlen(ptr3 + 1) >= sizeof(Evt->UDN))

 return -1;

 snprintf(Evt->UDN, sizeof(Evt->UDN), "uuid:%s",

 ptr3 + 1);

 }

 else

 return -1;

 ptr1 = strstr(cmd, ":");

 if (ptr1 != NULL) {

 n = (size_t)ptr3 - (size_t)ptr1;

 strncpy(TempBuf, ptr1, n);

 TempBuf[n] = '\0';

 if (strlen("urn") + strlen(TempBuf) >= sizeof(Evt->DeviceType))

 return -1;

 snprintf(Evt->DeviceType, sizeof(Evt->DeviceType),

 "urn%s", TempBuf);

 } else

 return -1;

 return 0;

 }

 if ((TempPtr = strstr(cmd, "uuid")) != NULL) {

 if ((Ptr = strstr(cmd, "::")) != NULL) {

 n = (size_t)Ptr - (size_t)TempPtr;

 strncpy(Evt->UDN, TempPtr, n);

 Evt->UDN[n] = '\0';

 } else {

CVE-2012-5958

CVE-2012-5959

Copyright © 2012-2013 Rapid7, Inc. 17

 memset(Evt->UDN, 0, sizeof(Evt->UDN));

 strncpy(Evt->UDN, TempPtr, sizeof(Evt->UDN) - 1);

 }

 CommandFound = 1;

 }

 if (strstr(cmd, "urn:") != NULL && strstr(cmd, ":service:") != NULL) {

 if ((TempPtr = strstr(cmd, "urn")) != NULL) {

 memset(Evt->ServiceType, 0, sizeof(Evt->ServiceType));

 strncpy(Evt->ServiceType, TempPtr,

 sizeof(Evt->ServiceType) - 1);

 CommandFound = 1;

 }

 }

 if (strstr(cmd, "urn:") != NULL && strstr(cmd, ":device:") != NULL) {

 if ((TempPtr = strstr(cmd, "urn")) != NULL) {

 memset(Evt->DeviceType, 0, sizeof(Evt->DeviceType));

 strncpy(Evt->DeviceType, TempPtr,

 sizeof(Evt->DeviceType) - 1);

 CommandFound = 1;

 }

 }

 if ((TempPtr = strstr(cmd, "::upnp:rootdevice")) != NULL) {

 /* Everything before "::upnp::rootdevice" is the UDN. */

 if (TempPtr != cmd) {

 n = (size_t)TempPtr - (size_t)cmd;

 strncpy(Evt->UDN, cmd, n);

 Evt->UDN[n] = 0;

 CommandFound = 1;

 }

 }

 if (CommandFound == 0)

 return -1;

 return 0;

}

We see that the code has been refactored, but still suffers from three buffer overflows in

roughly the same places as before. The strncpy() function is being passed a length based on

the distance between two strings in the attacker-supplied request, but is not checked against

the size of the destination buffer.

Triggering CVE-2012-5958 can be accomplished with a request like the following:

M-SEARCH * HTTP/1.1

Host:239.255.255.250:1900

ST:uuid:schemas:device:AAAA[…]AAAA:anything

Man:"ssdp:discover"

MX:3

Exploitability

What makes these vulnerabilities particularly bad is the context in which this code is called.

An attacker can send a single, potentially spoofed UDP packet to the internet IP address of

the system running this code and corrupt the program stack. This library limits input to

approximately 2,500 bytes, providing ample room to include malicious code.

CVE-2012-5960

Copyright © 2012-2013 Rapid7, Inc. 18

There are some caveats. The HTTP parser will reject the request if certain conditions are not

met. The string that the attacker sends for the “ST” header that is processed by the

unique_service_name() function must run the gauntlet of scanner_get_token() code within

httpparser.c to avoid returning an error. This function treats characters differently

depending on range and state.

1. Bytes between 0x20 and 0x7e are generally accepted

2. Bytes above 0x7e must be part of a double quoted string

3. Bytes below 0x20 or exactly 0x7f must NOT be placed in a double quoted string

These conditions complicate exploitation, especially on non-x86 platforms with fixed-width

instruction sets such as ARM, MIPS, and PPC, due to limited encoding options available. The

use of reserved bit manipulation techniques may help on fixed-width instruction platforms.

On all modern Linux platforms, address space layout randomization (ASLR), the lack of the

execute bit on certain pages, and NULL bytes within the image address may also complicate

exploitation. Notable, however, is the line of code that writes a NULL byte to the “end” of

the copied string in TempBuf:

TempBuf[n] = '\0';

Depending on compiler options, the value of local variable “n” may have been overwritten by

the preceding strncpy() function. This allows the attacker to write a single NULL byte to the

location of their choice. This was proven possible on the little-endian MIPS platform against a

commercial Linux-based home router and allowed a return address within the hosting binary

to be used, even though it had a NULL byte in the address.

Additionally, partial overwrite techniques may be used on little endian platforms, but doing

so will prevent stack control needed for return-oriented programming (ROP) techniques.

Finally, on some platforms, it may be possible to simply predict the heap location of the

allocated request, allowing a return into data that doesn’t get processed by the HTTP parser.

Vendor Response

Rapid7 worked with CERT/CC to coordinate the disclosure process. CERT/CC reached out to

the libupnp project along with other regional CERT teams to notify affected vendors. Version

1.6.18 of libupnp has been released and corrects the vulnerabilities identified in this paper.

http://uninformed.org/index.cgi?v=1&a=1&p=10

Copyright © 2012-2013 Rapid7, Inc. 19

MiniUPnP

The second most prevalent UPnP implementation is MiniUPnPd, a complete UPnP solution that
handles not just the network processing, but the actual firewall rule management and other
SOAP services.

Simple Service Discovery Protocol Vulnerabilities

Two related issues were identified in the SSDP handler of MiniUPnP. These issues were fixed
in version 1.4 but had not been documented as security problems. CVE-2013-0229 has been
assigned to track these issues.

In version 1.0 of the MiniUPnPd source code, the SSDP parser code lives within minissdp.c.
The ProcessSSDPRequest() function is listed below:

void

ProcessSSDPRequest(int s, unsigned short port)

{

 int n;

 char bufr[1500];

 socklen_t len_r;

 struct sockaddr_in sendername;

 int i, l;

 int lan_addr_index = 0;

 char * st = 0;

 int st_len = 0;

 len_r = sizeof(struct sockaddr_in);

 n = recvfrom(s, bufr, sizeof(bufr), 0,

 (struct sockaddr *)&sendername, &len_r);

 […]

 else if(memcmp(bufr, "M-SEARCH", 8) == 0)

 {

 i = 0;

 while(i < n)

 {

 while(bufr[i] != '\r' || bufr[i+1] != '\n')

 i++;

 i += 2;

 if(strncasecmp(bufr+i, "st:", 3) == 0)

 {

 st = bufr+i+3;

 st_len = 0;

 while(*st == ' ' || *st == '\t') st++;

 while(st[st_len]!='\r' && st[st_len]!='\n') st_len++;

 }

 }

The code in question is designed to receive a packet of up to 1500 bytes long and scan

through it line by line until it finds one starting with the prefix “ST:”. The problem here is

two-fold:

CVE-2013-0229

Copyright © 2012-2013 Rapid7, Inc. 20

1. The first highlighted while loop doesn’t check for the end of the buffer. If the request

ends without a terminating \r\n sequence, the loop will continue reading on past the

end of the allocated buffer. Eventually it will either find a spurious \r\n or crash when

it runs off the stack.

2. The second and third highlighted while loops have the same problem in that they fail

to check for an index beyond the end of the buffer. The first of these loops is unlikely

to be hit, but the second loop will continue extending the length of the found string

until a \r or a \n is found.

When triggered, the first issue is most likely to just crash the daemon, resulting in a denial of

service. The second issue can be used to create a ridiculously long “ST” string that can go

beyond the end of the buffer. In reality, this would have no noticeable effect, as the “ST”

string is squashed into a snprintf() that limits the entire buffer size to 512 bytes.

The actual impact of both sets of issues would be a potential denial of service.

The example below would trigger a crash in version 1.0 of the SSDP service included in

MiniUPnP version 1.0.

M-SEARCH * HTTP/1.1

Host:239.255.255.250:1900

ST:uuid:schemas:device:MX:3< no CRLF >

SOAP Handler Vulnerabilities

A remote stack buffer overflow was identified in the SOAPAction handler of the HTTP service
included with MiniUPnP version 1.0. All versions of MiniUPnP newer than 1.0 are not affected,
but keep in mind that 67% of all identified systems running MiniUPnP are still using a
vulnerable version. CVE-2013-0230 has been assigned to track this issue.

The following code is from ProcessHTTPPOST_upnphttp() in upnphttp.c.

 if(h->req_soapAction)

 {

 /* we can process the request */

 syslog(LOG_INFO, "SOAPAction: %.*s",

 h->req_soapActionLen, h->req_soapAction);

 ExecuteSoapAction(h,

 h->req_soapAction,

 h->req_soapActionLen);

 }

The ExecuteSoapAction method consists of the following code:

void

Copyright © 2012-2013 Rapid7, Inc. 21

ExecuteSoapAction(struct upnphttp * h, const char * action, int n)

{

 char * p;

 char method[2048];

 int i, len, methodlen;

 i = 0;

 p = strchr(action, '#');

 methodlen = strchr(p, '"') - p - 1;

 if(p)

 {

 p++;

 while(soapMethods[i].methodName)

 {

 len = strlen(soapMethods[i].methodName);

 if(strncmp(p, soapMethods[i].methodName, len) == 0)

 {

 soapMethods[i].methodImpl(h);

 return;

 }

 i++;

 }

 memset(method, 0, 2048);

 memcpy(method, p, methodlen);

 syslog(LOG_NOTICE, "SoapMethod: Unknown: %s", method);

 }

 SoapError(h, 401, "Invalid Action");

}

1. The first two highlighted lines assume that the SOAPAction header contains a hash (#) and

a double-quote. A missing hash would result in a NULL pointer read, crashing the service.

A missing double-quote would result in a negative value for methodlen, since the strchr()

would return NULL.

2. The memcpy() could be corrupted in two different ways.

a. The first is triggered when a double-quote is missing from the SOAPAction header.

This would result in the memcpy() being passed a negative length, which would be

treated as a large positive length after being casted to an unsigned integer. This

type of scenario is difficult to exploit unless the pointer to a signal handler is

stored in adjacent memory to the destination pointer.

b. The straightforward approach is to pass a quoted method length that exceeds 2048

bytes. This would result in a classic stack buffer overflow that has few character

restrictions and nearly unlimited data to work with.

Vendor Response

Thomas Bernard of the MiniUPnP project was contacted with our findings and provided great

feedback on an early draft of this advisory. The two sets of issues above were fixed in 2009

CVE-2013-0230

Copyright © 2012-2013 Rapid7, Inc. 22

and 2008 respectively. In addition to the issues above, a few other issues have been identified

and reported. This paper will be updated once a patch is available from MiniUPnP.

Please note that although the issues above have been fixed in newer versions of MiniUPnP,
version 1.0 still accounts for 69% of the unique MinUPnP SSDP fingerprints and over 14% of the
total UPnP fingerprints collected.

Copyright © 2012-2013 Rapid7, Inc. 23

Appendices

Copyright © 2012-2013 Rapid7, Inc. 24

Prior Research

The UPnP protocol has been the focal point of numerous security research efforts in the past.

This section contains a listing of notable prior work in this area. This list is by no means

comprehensive, but should provide a rough timeline of UPnP search research.

Microsoft Windows ME UPnP Service Denial of Service Flaw

In 2001, milo omega reported a denial of service flaw in the UPnP service included

with Microsoft Windows ME.

Microsoft Windows UPnP Service Denial of Service Flaws

In 2001, Ken from FTU Security identified three vulnerabilities in the UPnP service

included with Microsoft Windows.

Microsoft Windows UPnP Remote Code Execution Flaws

In 2001, researchers at eEye identified multiple exploitable vulnerabilities in the UPnP

service included in Microsoft Windows.

Linksys Router Unauthorized Management Access Vulnerability

In 2002, Seth Bromberger reported an authentication bypass flaw in the Linksys web

interface. The root cause was a reuse of the same interface for administration and

UPnP SOAP requests, which lead to improperly handling of requests with a path ending

in “.xml”

Vulnerability Report for Linksys Devices

In 2003, Gerard Richarte reported a number of flaws in the Linksys web interface,

some of which were related to UPnP support.

http://www.securityfocus.com/bid/3442/info
http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2001-11/0014.html
http://technet.microsoft.com/en-us/security/bulletin/ms01-059
http://www.securityfocus.com/bid/6201
http://seclists.org/bugtraq/2002/Dec/24

Copyright © 2012-2013 Rapid7, Inc. 25

NetGear FM114P WAN Information Disclosure

In 2003 Björn Stickler discovered that NetGear FM114P routers exposed the SOAP API

on the WAN interface. This API could be used to retrieve information about the ISP

connection, including the PPP username.

Xavi DSL Router UPNP Long Request Denial Of Service Vulnerability

In 2003, David F. Madrid reported a flaw in the Xavi DSL router UPnP HTTP service.

Belkin 54G Wireless Router Multiple Vulnerabilities

In 2004, pureone reported a number of vulnerabilities in the Belkin 54G wireless

router, including an information disclosure issue in the UPnP service.

Shorewall and UPnP

In 2005, Thomas M. Eastep published a document entitled “Shorewall and UPnP”,

which details some of the weaknesses with the IGD profile of the UPnP protocol. The

document contains the quote “From a security architecture viewpoint, UPnP is a

disaster”.

Microsoft Security Bulletin MS05-039

In 2005, Microsoft disclosed a remotely exploitable vulnerability in the Windows UPnP

service. This vulnerability was reported by Neel Mehta and subsequently used in the

Zotob worm.

Crazy Toaster: Can home devices turn against us?

In 2005, Dror Shalel presented at Defcon 15 on the UPnP protocol, with a focus on

malicious device emulation.

D-Link Router UPNP Stack Overflow

In 2006, Barnaby Jack reported a remotely exploitable stack overflow in the UPnP

SSDP service used by D-Link routers.

http://www.securityfocus.com/bid/7267/info
http://www.securityfocus.com/bid/8252/info
http://www.securityfocus.com/bid/12846/info
http://www.shorewall.net/UPnP.html
http://technet.microsoft.com/en-us/security/bulletin/ms05-039
http://www.defcon.org/images/defcon-15/dc15-presentations/DC-15-shalev.pdf
http://seclists.org/fulldisclosure/2006/Jul/365

Copyright © 2012-2013 Rapid7, Inc. 26

UPnP-Hacks.org Research

In 2006, Armijn Hemel created UPnP-Hacks.org, a web site detailing his investigation

into UPnP security flaws. Issues identified include port forwarding, command injection

through SOAP requests, and potential buffer overflows.

Microsoft Security Bulletin MS07-019

In 2007, Microsoft disclosed a remotely exploitable vulnerability in the Windows UPnP

service. This vulnerability was reported by Greg MacManus.

Apple Mac OS X mDNSResponder Buffer Overflow

In 2007, Michael Lynn reported a remotely exploitable vulnerability in the Mac OS X

mDNSResponder service. The flaw was triggered by an excessively long Location

header in the UPnP SSDP response parser.

GNU Citizen/PDP UPnP Research

In 2008, GNU Citizen/PDP wrote three blog posts detailing some of the security issues

with UPnP as a protocol. These were followed by an FAQ on the ability to report maps

via IGD using a Flash application within the victim’s web browser.

A Fox in the Hen House

In 2008, Jonathan Squire presented at BlackHat USA on security issues with the UPnP

protocol and the IGD profile in particular. Links to the UPnPWn tool and associated

white papers can be found on his blog.

Miranda UPnP Client

In 2008, SourceSec released the Miranda UPnP administration tool. This provided an

easy way to identify UPnP control points and manipulate port forwarding rules. The

latest version of this tool can be found in the Google Code repository.

http://www.upnp-hacks.org/
http://technet.microsoft.com/en-us/security/bulletin/ms07-019
http://www.kb.cert.org/vuls/id/221876
http://www.gnucitizen.org/blog/hacking-the-interwebs/
http://www.gnucitizen.org/blog/hacking-with-upnp-universal-plug-and-play/
http://www.gnucitizen.org/blog/more-upnp-hacking-fun-with-google-media-server/
http://www.gnucitizen.org/blog/flash-upnp-attack-faq/
http://www.blackhat.com/presentations/bh-usa-08/Squire/BH-08-Squire--A_Fox_in_the_Hen_House_UPnP_IGD_v1.1.0.pdf
http://bigbrainlabs.blogspot.com/
http://www.sourcesec.com/2008/11/07/miranda-upnp-administration-tool/
http://code.google.com/p/miranda-upnp/

Copyright © 2012-2013 Rapid7, Inc. 27

UPnP Mapping at Defcon 19

In 2011, Daniel Garcia presented at Defcon 19 and described the widespread exposure

of IGD SOAP interfaces to the public internet. Daniel also released “UMap”, a tool for

proxying attacks from the public internet to internal machines. CERT/CC issued

VU#357851 as a result of this research.

Black Ops of TCP/IP 2011

In 2011, Dan Kaminsky also presented at Defcon 19 (as well as BlackHat USA 2011) in a

talk that touched on UPnP. Starting on slide 31 is a brief discussion of the UPnP

protocol. Dan’s work focused on identifying internet-exposed SOAP interfaces bound to

TCP port 2869 and referenced the work done by Daniel Garcia.

https://media.defcon.org/dc-19/presentations/Garcia/DEFCON-19-Garcia-UPnP-Mapping.pdf
http://toor.do/upnp.html
http://www.kb.cert.org/vuls/id/357851
http://dankaminsky.com/2011/08/05/bo2k11/

Copyright © 2012-2013 Rapid7, Inc. 28

Vulnerable Products: Portable SDK for UPnP Devices (libupnp)

The list below was obtained by querying the SOAP device description of approximately one

million UPnP-enabled devices. The vendor, product, and versions may not be accurate as a

result of this method. Due to size constraints, the full list of vulnerable products has been

placed online. Please follow this link to download the full list.

Vulnerable Products: MiniUPnP

The list below was obtained by querying the SOAP device description of approximately one

million UPnP-enabled devices. The vendor, product, and versions may not be accurate as a

result of this method. Due to size constraints, the full list of vulnerable products has been

placed online. Please follow this link to download the full list.

Vulnerable Products: SOAP API Exposure

The list below was obtained by querying the SOAP device description of approximately one

million UPnP-enabled devices. The vendor, product, and versions may not be accurate as a

result of this method. Due to size constraints, the full list of vulnerable products has been

placed online. Please follow this link to download the full list.

https://docs.google.com/spreadsheet/ccc?key=0ApUaRDtAei07dFdOWXdKRUVaUTdRYndnbW5zajRyTmc
https://docs.google.com/spreadsheet/ccc?key=0ApUaRDtAei07dDhwelZDQlYyQVJhbWRtUEIwVEVyRFE
https://docs.google.com/spreadsheet/ccc?key=0ApUaRDtAei07dGxkSHN1cEN3V2pmYW4yNkpZMlQ0Rmc

	Executive Summary
	Summary Statistics
	Immediate Actions
	Internet Service Providers
	Businesses
	Home and Mobile Users

	Introduction
	Acknowledgements
	Universal Plug and Play

	Research Results
	Widespread Exposure of the UPnP SSDP Service
	Widespread Exposure of the UPnP SOAP Service
	UPnP Exposure Concentrated Across Four Implementations
	Network Devices use Outdated UPnP Implementations
	Exploitable Vulnerabilities in the Portable SDK for UPnP Devices SSDP Parser
	Exploitable Stack Overflow in the MiniUPnP SOAP Handler
	Denial of Service Flaws in the MiniUPnP SSDP Parser
	Methodology
	Data Distribution
	Version Distribution: Portable SDK for UPnP Devices
	Version Distribution: MiniUPnP

	Vulnerabilities
	Intel/Portable SDK for UPnP Devices (libupnp)
	Simple Service Discovery Protocol Vulnerabilities
	Exploitability
	Vendor Response

	MiniUPnP
	Simple Service Discovery Protocol Vulnerabilities
	SOAP Handler Vulnerabilities
	Vendor Response

	Appendices
	Prior Research
	Microsoft Windows ME UPnP Service Denial of Service Flaw
	Microsoft Windows UPnP Service Denial of Service Flaws
	Microsoft Windows UPnP Remote Code Execution Flaws
	Linksys Router Unauthorized Management Access Vulnerability
	Vulnerability Report for Linksys Devices
	NetGear FM114P WAN Information Disclosure
	Xavi DSL Router UPNP Long Request Denial Of Service Vulnerability
	Belkin 54G Wireless Router Multiple Vulnerabilities
	Shorewall and UPnP
	Microsoft Security Bulletin MS05-039
	Crazy Toaster: Can home devices turn against us?
	D-Link Router UPNP Stack Overflow
	UPnP-Hacks.org Research
	Microsoft Security Bulletin MS07-019
	Apple Mac OS X mDNSResponder Buffer Overflow
	GNU Citizen/PDP UPnP Research
	A Fox in the Hen House
	Miranda UPnP Client
	UPnP Mapping at Defcon 19
	Black Ops of TCP/IP 2011

	Vulnerable Products: Portable SDK for UPnP Devices (libupnp)
	Vulnerable Products: MiniUPnP
	Vulnerable Products: SOAP API Exposure

