
Building Communities for
Open Source Security Tools

HD MOORE
Founder & CEO

Building

I’ve always liked making things and sharing them
I struggle with drawing, writing, & crafts
But I love building software

Security

Infosec software is incredibly fun to write
Treat the world as a large video game
With real consequences

Open Source

Building in the open is terrifying and exciting
A huge potential audience for your work
A great way to learn fast
And make friends!

Why Build OSS?

Solve a need that you or your organization has
Great for personal & career development
Effectively a startup with similar work
Fame? Spite? No bad reasons!

The Metasploit Project

Created to make penetration testing safer
Initial focus was shellcode, not exploits
Shifted to exploits, scanners, payloads
A way to maintain research tools
A loud voice for disclosure
Just me in 2002

Metasploit 1 Was Terrible

Dinky Perl scripts with 9 shoddy exploits
Released in 2002 at HitB (Malaysia)
A “spoonm” emailed me to complain
I said ok, do it better…

Metasploit 2 Got Better

Team became 3 with the addition of “skape”
Widely ridiculed by the security scene
Meterpreter, VNC, IDS & AV evasion
Good enough to be stolen

Metasploit 3 Hit Critical Mass

Grew to a half-dozen active developers
Completed a rewrite from Perl to Ruby
Hundreds of contributors over time
Many research side projects
Conferences & training

Metasploit Track at DEFCON 17

Rapid7 Acquires Metasploit

I join Rapid7, bring on egyp7, we hire a team
Expand OSS & launch commercial product
Incredibly busy, but mostly succeeds
Merge into Rapid7 engineering in 2013
I officially left the project in 2017

* See BHDC 2010 “Metasploit and Money” for details and lessons learned.

Rapid7’s Continued Improvements

Thriving community and frequent updates
Great per-module docs (+ AttackerKB)
Multi-language modules (Python!)
Modules with hardware interfaces
Big thanks to Caitlin Condon!

Metasploit is 23 Years Old

Nmap is 28, Kismet is 23, ZAP is 20
What made these successful?
Why are these still around?

* ZAP was forked from Paros Proxy 3.2.12

Key Traits

Deep focus on a technically difficult problem
Friendly path for community contributions
Clear boundaries on project scope
Extensive documentation
Consistent leadership

Create

Preamble

It’s your project and only your opinion matters
It’s 100% OK to retire a project, no guilt!
The goal is to learn things and have fun
Mistakes are mostly* fixable

1. Choose a Name

Domains Socials Packages Trademarks Offensive Terms

<Your Org> [Non-Unique Name]
“Garth’s VPN Scanner”

[Unique Name]
“VeepScan”

Check for conflicts

Two great options

2. Choose a License

MIT / BSD / Apache

Permissive and safe to relicense
Simple community engagement
Many free packaging options
No abuse protection

Source Available

Technically not “Open Source”
Difficult community engagement
Trickier to support packaging
Still safer than using GPL variants

Two safe options

Why Avoid GPL Variants?

GPL can prevent *you* from relicensing later
Commercially toxic for embedding
Limited abuse protection

3. Pick a Forge

Choose a service provider or self-host
Practically, just use GitHub
Otherwise mirror to it

4. Issues and Contributions

Setup a bug tracker, create templates
Document how to contribute code
Set expectations for response
Disable other forge features

5. Discussion and Support

Publish some form of contact information
Document your security policy
Direct folks to a shared forum
Publish a Code of Conduct
Read your messages

6. Security Best Practices

Leverage CI/Forges for security monitoring
● Dependency tracking and updates
● Security source scanning
● Secret scanning

OpenSSF is a great resource
● https://openssf.org/technical-initiatives/developer-best-practices/
● https://www.bestpractices.dev/en/criteria/0

Grow

Growing Your Project

Marketing time! Get users! Promote!
Style and polish matter! Excite folks!
Conference talks? ahem

Reduce Friction For Users

A one-liner is best, cloud demo even better
Leverage packaging frameworks
Show a fast time-to-value

Reduce Friction For Contributors

Public CoC, create issue and PR templates
Write up “easy” issues for first-timers
Create modules, scripts, or plugins
Simplify documentation updates

Give The Community a Space

Mailing lists, forums, slacks, and discords
Preferably something searchable
Encourage questions!
Run surveys!

Make Your Community Look Good

Give credit generously, showcase contributors
Highlight interesting use cases
Write up case studies
Track usage stats

Tell The World Your Plans

State your goals and publish a roadmap
Provides a compass for decisions
Document what you won’t do

Shininess in 2025

The minimum bar for pretty has been raised
Lots of tools help, but they require effort
Want to succeed? Polish!
It still feels silly

Look For Helpers

Deputize friendly folks who can help the project
Invite them to help respond to the community
Limit their access, keep an eye out for abuse
Help them out in return

Challenges

Back Of The House

Register a business entity for the project
Assign © and domains to the entity
Register trademarks to the entity
$500 - $1500 (!)

Hard Truths

Nobody will care more than you
Code won’t make you money
You’re likely the owner for life
It will likely die without you

Conflicts

Give folks the benefit of the doubt, once
Trolls always exist, you can’t fix them
You also don’t owe them anything
Consider limiting interactions
● Offer commercial support contracts
● Disable issues, use email

Workload

A full-time job jammed into your spare time
Feels a lot like commercial product work
Folks often bring up “sustainability”
OSS runs on free time and fumes

Commercialization

Making money from OSS is counter-intuitive
OSS maintenance conflicts with paid work
Nothing you already do helps
What to do instead?

Difficult Commercial Models

Relicensing (*GPL, SSPL) and charging businesses
Paid feature development
Corporate sponsorship
Acquisition

Better Commercial Models

Support contracts with a monthly retainer
Offering a hosted turnkey solution
Build a separate product

Afterlives

Document a“living will” for your project
Decide on archiving vs handing off
Define a forking policy (need ™)

Defense

Transfer to a company that depends on the code
Transfer to a bigger project or foundation
Consider archiving it instead
Avoid getting “Jia Tan”ed

Introducing
excrypto & SSHamble

Go: excrypto & sshamble

TLS is part of the stdlib (Go 1.24.1, etc)
SSH is part of the x/crypto stdlib
Great code, but not super flexible
Challenging for security uses

sshamble

A customized version of x/crypto/ssh
Designed for deep protocol tweaks
Also a CLI for auditing SSH
Drops lots of shells!

excrypto

A fork + tweaks to zcrypto (a fork of stdlib)
Speaks SSL 3.0 and TLS 1.3 (+PQC)
Co-resides with stdlib and FIPS
Lenient certificate parsing

Create

Name: excrypto (lib) & sshamble (lib/cli)

License: BSD (2−clause)

Code/Forge: GitHub.com/runZeroInc/excrypto
GitHub.com/runZeroInc/sshamble

Bugs/Contribs: Issues and Pull Requests

Discussion/Support: GopherSlack #excrypto & #sshamble

Security: GitHub (Dependabot, Secret Scanner, Security Policy)
golangci-lint + gosec + govet

Grow

Launch: sshamble launched at BH/DC 2024
excrypto at BSidesSF 2025

Branding: Logo and domain (sshamble.com)

Deploy: go install github.com/runZeroInc/sshamble@latest
go get github.com/runZeroInc/excrypto@latest

Roadmap

Introduce excrypto into other OSS projects
Align maintenance with corporate interests
Package sshamble into popular distros
Document internal maintenance tasks
Automate as much as possible

56

→ A research tool for SSH implementations
→ Interesting attacks against authentication
→ Post-session authentication attacks
→ Pre-authentication state transitions
→ Post-session enumeration
→ Easy timing analysis

https://SSHamble.com

57

bypass
auth=none skip=auth auth=success

method=null method=empty skip=pubkey-any

publickey
pubkey-any pubkey-any-half user-key

half-auth-limit pubkey-hunt —

password
pass-any pass-empty pass-null

pass-user pass-change-empty pass-change-null

keyboard
kbd-any kbd-empty kbd-null

kbd-user — —

gss-api gss-any — —

userenum timing-none timing-pass timing-pubkey

vulns
vuln-tcp-forward vuln-generic-env vuln-softserve-env

vuln-gogs-env vuln-ruckus-password-escape —

Built-in checks

58

Start a network scan
$ sshamble scan -o results.json 192.168.0.0/24

Analyze the results
$ sshamble analyze -o output results.json

Specify ports, usernames, passwords, public keys, private keys, and
more
$ sshamble scan -o results.json 192.168.0.0/24 \

--users root,admin,4DGift,jenkins \
–-password-file copilot.txt \

-p 22,2222 \
--pubkey-hunt-file admin-keys.pub \

Open an interactive shell for sessions
$ sshamble scan -o results.json 192.168.0.0/24 \

–-interact first --interact-auto pty,env LD_DEBUG=all,shell

Getting started

59

Enter the sshamble shell with `^E`. Commands:

 exit - Exit the session (aliases 'quit' or '.')
 help - Show this help text (alias '?')
 env a=1 b=2 - Set the specified environment variables (-w for wait
mode)
 pty - Request a pty on the remote session (-w for wait mode)
 shell - Request the default shell on the session
 exec cmd arg1 arg2 - Request non-interactive command on the session
 signal sig1 sig2 - Send one or more signals to the subprocess
 tcp host port - Make a test connection to a TCP host & port
 unix path - Make a test connection to a Unix stream socket
 break milliseconds - Send a 'break' request to the service
 req cmd arg1 arg2 - Send a custom SSH request to the service
 sub subsystem - Request a specific subsystem
 send string - Send string to the session
 sendb string - Send string to the session one byte at a time

sshamble>

The interactive shell

60

Recent updates

→ Release binaries are now available from GitHub
→ Experimental BadKeys.info support in analyze
→ Container support (thank you Rial Sloan II!)
→ Various small bug fixes & improvements

https://SSHamble.com

61

Building SSHamble: Library

→ SSHamble forks x/crypto/ssh as an internal package in a weirdly specific way
→ Extend existing structs with separate files versus edits
→ Wrap and export internal structs and functions
→ Some code duplication, but minimal diffs
→ Much easier maintenance!

#!/bin/bash

rm -rf crypto.upstream/ && \

git clone https://github.com/golang/crypto.git crypto.upstream/ && \

LC_ALL=C find ./crypto.upstream/ -type f -exec sed -i '' -e

's@golang.org/x/crypto@github.com/runZeroInc/sshamble/crypto@g' {} \; && \

rm -f ./crypto.upstream/go.mod ./crypto.upstream/go.sum && \

rm -rf crypto.upstream/.git/ && \

rm -rf crypto/ && \

mv crypto.upstream/ crypto/ && \

patch -p0 < crypto.patch

62

Building SSHamble: Client

→ The x/crypto/ssh client provides very little protocol control

→ ssh.Dial() does everything in one step

• Connect, version exchange, key exchange, secure transport, auth!

• ssh.Dial("tcp", "host:22", config)

→ Reimplement the client into individual steps with full control

→ Provide a config that indicates stopping points & callbacks

→ Handle deadlocks through forced socket closes

→ Result is a very odd authentication function

• https://github.com/runZeroInc/sshamble/blob/main/auth/auth.go#L44

https://github.com/runZeroInc/sshamble/blob/main/auth/auth.go#L44

63

Building SSHamble: Gotchas

→ SSH shell Stdin / Stdout / Stderr doesn’t work like you would expect

• Some servers drain input from Stdin before the process starts

• The remote shell doesn’t see your input

• Send one byte at a time, like a human, or sleep (!)

→ Raw mode terminals (for --interact mode) are a nightmare

• Concurrency and raw mode TTY is tricky

• Requires a singleton/global stdio manager

• Logging has to switch to \r\n from \n for raw

• Signal handlers break, easy to get stuck

• https://github.com/runZeroInc/sshamble/blob/main/cmd/interact.go#L85

https://github.com/runZeroInc/sshamble/blob/main/cmd/interact.go#L85

Thank You!
hdm@runZero.com

